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Numerically solvable model for resonant collisions of electrons with diatomic molecules
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We describe a simple model for electron-molecule collisions that has one nuclear and one electronic degree
of freedom and that can be solved to arbitrarily high precision, without making the Born-Oppenheimer ap-
proximation, by employing a combination of the exterior complex scaling method and a finite-element imple-
mentation of the discrete-variable representation. We compare exact cross sections for vibrational excitation
and dissociative attachment with results obtained using the local complex potential approximation as com-
monly applied in the “boomerang” model, and suggest how this two-dimensional model can be used to test the
underpinnings of contemporary nonlocal approximations to resonant collisions.
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I. INTRODUCTION

For decades, resonant collisions of electrons with di-
atomic molecules have been studied with theoretical methods
that seek to describe the nuclear dynamics of vibration or
dissociation during the collision. The basic idea of these ap-
proaches is to cast the problem in terms effective potentials
or effective Hamiltonians for nuclear motion that can be con-
structed, at least in principle, from an adiabatic (fixed-nuclei)
description of the electron scattering resonance and its cou-
pling to the electronic continuum.

Among the earliest work in this area is that of O’Malley
[1,2] and O’Malley and Taylor [3] on dissociative attachment
based on the idea of Feshbach partitioning of the electron
scattering wave function into resonant and nonresonant parts.
Herzenberg and co-workers [4—6] later applied these ideas to
vibrational excitation and developed the local complex po-
tential model that is generally known as the “boomerang
model” in this context and that has been widely applied.
More sophisticated approaches involving nonlocal, complex,
and energy-dependent potentials for nuclear motion have
been developed since then [7,8], and applied to a number of
diatomic systems. The class of such methods based on pro-
jection operators was reviewed by Domcke in the early
1990s [9].

Judging from the comparison of the calculated cross sec-
tions with experiment, the nonlocal theories have been used
with great success to describe both vibrational excitation and
dissociative attachment to diatomic molecules, as can be
seen from just a sampling of such studies [6-13]. However,
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in almost all cases the parameters of these calculations are
found either by fitting some portion of the known experimen-
tal results, or in an approximate way from ab initio calcula-
tions, and they generally involve assumed forms for the co-
ordinate and energy dependence of those parameters. Since a
complete set of experimental measurements for all processes
that can occur in these collisions is never available, it has
been difficult to make a definitive test of the underlying as-
sumptions of the formulation of the theory.

Our purpose here is to construct a theoretical laboratory in
which such tests can be made unambiguously, including the
question of whether non Born-Oppenheimer effects can be
important in these resonant collisions—either within the
resonant state or in the electronic continuum to which it
couples. To that end we have constructed a two-dimensional
model system, with one electronic and one nuclear degree of
freedom. This two-dimensional problem can be solved to
arbitrary precision by using a combination of two modern
numerical methods. One of them is the exterior complex
scaling (ECS) method, which allows us in this context to
construct the full Green’s function for this two-dimensional
problem. The second is a generalization [14] of the discrete-
variable representation (DVR) [15] which combines that idea
with the finite-element method (FEM). The combination of
these ideas has been used with great success in a different
context to solve problems that involve two electrons in the
continuum [ 16]. In this work it allows us to solve this model
problem exactly for the processes of vibrational excitation,

e +AB(v;) — ¢~ +AB(vy), (1)
and dissociative electron attachment,
¢ +AB(v;) = A+B". (2)

Here we show how this two-dimensional model can be
designed to mimic some well-studied electron-molecule scat-
tering problems that are dominated by shape resonances. The
physics of the coupled electron-nuclear motion are visible in
the exact wave functions we calculate for these systems.
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Moreover, the cross sections are both qualitatively and quan-
titatively similar to those measured for the corresponding
real systems.

The principal result we present here is the description of
this model system and the exact behavior of the cross sec-
tions associated with it. Furthermore, we compare the exact
cross sections with those calculated using two variants of the
local complex potential approximation to this two-
dimensional model. The comparison is unambiguous because
we can define the local complex potential from the exact
energy of the resonance pole of the S matrix for scattering of
the electron for a fixed internuclear distance.

These are the first steps toward comparing various nonlo-
cal approximations to the dynamics of nuclear motion with
the exact results to test their validity. Within this model we
can construct the parameters of those approximations unam-
biguously in precise numerical calculations. Moreover we
will argue that the fact that we can exactly calculate any
aspect of the dynamics of this model problem will eventually
allow us to separate the nonlocal effects that arise from cou-
pling of electron scattering resonances to the continuum into
which they can decay from effects due to the breakdown of
the Born-Oppenheimer approximation that is generally made
in the nonlocal theories.

In the following section we describe the two-dimensional
model Hamiltonian and the definitions of the vibrational ex-
citation and dissociative attachment cross sections in terms
of the exact wave functions. In Sec. III we discuss the nu-
merical methods used to solve this problem to arbitrary ac-
curacy. In Sec. IV we describe the local complex potential
approximation to the dynamics of this model system. In Sec.
V we will discuss the choice of parameters with which this
model can mimic the dynamics of electronic collisions with
the N, and NO molecules and demonstrate that the physics
of these collisions can be seen clearly in the resulting wave
functions and cross sections. Finally in Sec. VI we will dis-
cuss briefly how this model can allow us to probe the under-
lying assumptions of the current theories of resonant colli-
sions of electrons with molecules.

II. GENERAL DESCRIPTION OF THE TWO-
DIMENSIONAL MODEL

The Hamiltonian of our two-dimensional model with one
nuclear and one electronic degree of freedom is

H=Tx+T,+V(R,r) (3)
where
R B @
R oudr* 77 24r?

are molecular and electronic kinetic energy operators, u is
the reduced mass of a molecule, R is the internuclear dis-
tance and r is the distance of the electron from the molecule.
The potential V(R,r) is chosen to have the form

I(l+1)

272

V(R,r)=V,(R) + +Vin(R.7), &)

with
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ViR, ) = = N(R)e™®" (6)

In Eq. (5) the potential V,(R) describes the vibrational mo-
tion of the neutral molecule and it is the limit of the full
effective potential V(R,r), when the electron is at infinity

lim V(R,r) = Vy(R). (7)

The interaction of the electron with the molecule, Eq. (6),

is determined by functions A(R) and «(R). Roughly speak-

ing, N(R) controls the depth of the electronic potential well

and a(R) determines the width of this well. The centrifugal

term (I denotes electron angular momentum) is present to

provide resonant behavior in our model system for an overall

attractive choice of the interaction potential. By diagonaliz-
ing the fixed-nuclei (electronic) Hamiltonian

Hy=T,+V(R,r) (8)

we get an adiabatic potential energy curve of the molecular
anion (AB)".

With the Hamiltonian of Eq. (3), the system e"+AB at a
given energy E is described by the solution of the
Schrodinger equation

HVL(R,r)=EVLR,r) 9)

where Wi(R,r) satisfies appropriate boundary conditions.
Here we are especially interested in two inelastic processes,
namely, vibrational excitation and dissociative attachment.
The initial state of the model system for these two processes
is the same and reads

Wy (R.1) = X, (R)r (keir). (10)

Xvi(R) is a initial vibrational state of the molecule satisfying
the equation

[Tk + Vo(R) Ixo(R) = E, x,(R) (1)

and j, is a spherical Bessel function of the first kind [17]
describing an incoming electron with momentum k.. The
total energy of the system is

2

k=
E=Evi+§. (12)

To solve Eq. (9), we partition the full wave function W7 into
incident and scattered parts,

Vi(R,r) = ‘I’Si(R,r) + W (R,r). (13)

The unknown scattered part of the wave function, W (R, 7),
then satisfies a driven Schrodinger equation

(E = H)W(R,1) = Vin(R,) W, (R, 1), (14)
the boundary conditions for which are

q’sc(R’r) B EvaiEUtXUf(R)rhgl)(kefr)’ (15)
F—00 vg
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WielRer) —— £ by (RRG (KpaR) - (16)

where h(l) is a spherical Hankel functlon [17]. The scattering
amplltudes for vibrational excitation, fv ~.p and for dissocia-
tive attachment, fD are related to the T matrices for these
processes which we will define below.

The sum in Eq. (15) runs over all open vibrational exci-
tation channels, for which va(R) is the final vibrational state
of the molecule with energy E, and ke denotes the final
momentum of the electron. Equation (16) is the asymptotic
condition for the dissociative attachment channel (if it is
open). We suppose here that the model potential in Eq. (5)
supports only one bound state, ¢,(r), of the electron as R

— 00,
I(1+1
(m +1)

2r

which is appropriate for both the N,-like and NO-like mod-
els we will treat here. The binding energy E,, is related to the
electron affinity E, of the atom B by E,=—FE,;. The relative
momentum Kp, of A and B~ in the dissociative attachment
channel is given by

+ lllirolc Vim(RJ’)) ¢o(r) =Eypy(r), (17)

K2
=224 F,. (18)
2p
Finally, we give the expressions for the cross sections in
terms of the 7 matrices defined for the vibrational excitation
and dissociative attachment channels in terms of matrix ele-
ments of the interaction potentials,
TVE 0
(E)=(V, |VVE|‘I'E>

U i Uf

JcmfthW%Rﬂw@RﬂW(Rﬁ

RELE) )
T kg (19)
TDA(E) (WP AIVDAIWE)
A
f de dr \PDA(R r)VpaR,WEL(R,r) =
2,U«kDA
(20)

The unperturbed final states in the vibrational excitation and
dissociative attachment channels are given by

Wy (R.r) = X (R)rjikeir). (21)

W AR, 7) = Rjo(KpaR) dy(r), (22)

the interaction potential in the vibrational excitation channel
is the interaction between the electron and molecule, given in

Eq. (6),
VVE(R’r) = Vint(R’r) (23)

and in the dissociative attachment channel we define
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Voa(R.r) = Vo(R) + Vip(R,r) = lim Viy(R,r).  (24)
R—o0

The resulting formulas for the cross sections can then be
written as

167k,

VE O Ref

U —>U1(E) kel | U —U¢ (25)
167K,

N E) = — TN E). (26)

III. NUMERICAL SOLUTION AND EVALUATION OF
CROSS SECTIONS

A. Numerical method

To solve Eq. (14) and to find bound states of the electron
and molecule [Egs. (11) and (17)] we have made use of the
exterior complex scaling method implemented using finite
elements with a discrete-variable representation basis intro-
duced by Rescigno and McCurdy [14]. Details of this very
efficient numerical representation, called the FEM DVR, to-
gether with a description of some of its previous applica-
tions, can be found in a recent review [16]. Here we only
mention some of its main features and how they relate to the
present study.

Employing the ECS method for both electronic, r, and
nuclear, R, coordinates

RR) =1 R<Ro, (27)
| Ro+(R-Rp)e'™, R=Ry,
P () = = (28)
g r0+(r—r0)e”7r r=ry,

we avoid the need for explicit imposition of asymptotic
boundary conditions in vibrational excitation (an outgoing
electron) and dissociative attachment (an outgoing atom and
anion) channels. In the region where both coordinates are
real, as illustrated in Fig. 1, the solution of Eq. (14) obtained
by the ECS method is equal to the physical wave function of
the system and all integrals defining the scattering ampli-
tudes are evaluated in this region or on its boundary. There-
fore the ECS radii R, and r, must be chosen large enough to
contain all relevant interactions.

Because of the large difference between the masses of the
electron and molecule we use different grids for the two
coordinates r and R. Moreover, in order to perform the two-
dimensional calculations efficiently we adapted the R grids
to the molecular and molecular anion potentials of a particu-
lar model (the grid is much denser in the regions of deep
potential wells). The nuclear grid typically consists of about
40-50 elements and the electron grid of 10-15 elements with
17 DVR basis functions in each element (Lagrange interpo-
lating polynomials with mesh points derived from a Gauss-
Lobatto quadrature). ECS was employed always for the elec-
tronic coordinate with ry=100 but the nuclear coordinate has
to be complex scaled only if the dissociative attachment
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FIG. 1. Implementation of the ECS method for a system with
one molecular (R) and one electronic (r) degree of freedom. Fluxes
into vibrational excitation and dissociative attachment channels,
which are integrated along the lines r=r, and R=R, in Egs. (32)
and (34) to calculate cross sections, are shown schematically.

channel is open (in the case of the NO-like model we set
Ry=12).

A great advantage of the FEM DVR approach is that any
local operator, like the potential energy in Eq. (5), has a
diagonal representation. Although the kinetic energy is non-
diagonal, its matrix elements have simple analytic forms, and
because we use the DVR in combination with the finite-
element method the resulting matrix representation of the
full Hamiltonian of Eq. (3) is very sparse, usually having less
than 0.05% nonzero elements. This sparse matrix is complex
symmetric, and efficient standard numerical methods are
available to solve the resulting matrix representation of Eq.
(14).

B. Evaluation of cross sections

Given the solution of the driven Schrodinger equation in
Eq. (14) we need a procedure for extracting the cross sec-
tions for the collision processes we are interested in. Here we
give two equivalent methods for evaluating the cross sec-
tions from the wave function computed on the grid, which
we have used to test the stability and precision of the numeri-
cal methods employed to solve Eq. (14).

First, the cross section can be given in terms of the flux
projected into a given final channel

-1 .
Ff= 2_[(Pf\1,sc) \Y Pfq,sc - HC] (29)

i
where the P; is a projection operator for the final channel,

H.c. denotes the Hermitian conjugate, and the gradient op-
erator in this case is
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1 9
MmOR
V= . 30
9 (30)
or
In the vibrational excitation channel, Pe=P, projects on the
final vibrational state

P, W (R,7) = x,,(R) f Xo RNV (R, AR’ (31)
0
The cross section in terms of the projected flux reads

4 - -
a'® (E)=— lim f F,(R.r) - n,dR (32)
o kei r—o Jg f
where 71, denotes a unit vector for the electronic coordinate r.
Similarly, in the dissociative attachment channel we have the
projection operator

PopW(R.r) = (1) f G ()W (Rr)dr' . (33)
0
and the corresponding cross section is

PNE) = 2T lim f Fpa(R.r) - figdr (34)
' kei R—= J o
where ¢, (r) is defined by Eq. (17).

An alternative way to calculate these cross sections can be
based on direct evaluation of the appropriate 7-matrix ele-
ments using Egs. (19) and (20), and the definition of the
cross section in terms of them in Egs. (25) and (26). We can
evaluate the necessary integrals directly using the Gauss-
Lobatto quadrature used to define the DVR basis, or we can
transform the volume integrals in Egs. (19) and (20) to sur-

face integrals using Green’s theorem. The 7T-matrix elements
then take the form [16]

T(E) = (W{|VIWp) = (WPIE - HO|W )
1 * * A
ZEL(qf‘g VU -V V) .dS (35)

where V is defined in Eq. (30). In the case of vibrational
excitation we use V=Vyg from Eq. (23) so that H'=H
—Vyg and WY is given by Eq. (21), while for dissociative
attachment the potential is Vp, as defined in Eq. (24) and \If?
is given by Eq. (22).

IV. LOCAL COMPLEX POTENTIAL APPROXIMATION

To describe the nuclear dynamics of the negative molecu-
lar anion of a real system like e”+N,, one generally has to
resort to approximate methods that are based on the Born-
Oppenheimer approximation. The simplest and most fre-
quently used approach is the local complex potential (LCP)
approximation, which for vibrational excitation is also
known as the boomerang model.

In this approach, we define the resonant molecular anion
potential curve via the poles of the fixed-nuclei electron-
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TABLE 1. Parameters of the N,- and NO-like models, given in
atomic units, so that the resulting potential V(R,r) is in hartrees.

Parameter N, NO
) 12766.36 13614.16
l 2 (d wave) 1 (p wave)
D, 0.75102 0.2363
ay 1.15350 1.5710
Ry 2.01943 2.1570
oo 6.21066 6.3670
N 1.05708 5.0000
R\ —27.9833 2.0843
Ao 5.38022 6.0500
R, 2.40500 2.2850
«a, 0.40000 1.0000

scattering S matrix, which can be obtained by finding bound
or resonance energies of the electronic Hamiltonian in Eq.

(8),

Hel(R)(P(r;R) = Vres(R)(P(r;R), (36)

VielR) = Ero(R) = ST(R). (37)
with all quantities depending parametrically on the internu-
clear distance R. Typically there is one bound electronic state
of the molecular anion for large R, where V,.(R) is real and
less than V(R). That bound state becomes a resonance state
at internuclear distances shorter than some critical distance
R, where the molecular anion potential energy curve crosses
the potential energy curve V(R) of the neutral molecule. For
R<R, the anion potential V,(R) is complex and the real
part Eres(R) > VO(R)

The dynamics of the temporary molecular anion state in
the LCP approximation is described [6] by the equation

[E - TR - Vres(R)]gE(R) = é’vi(R)Xui(R)9 (38)

where {, (R) is the so-called “entry amplitude” for capture of
the electron into the resonant state with the molecule in the
initial vibrational state x, (R). The numerical methods de-
scribed in Sec. III can be used to obtain the adiabatic poten-
tial energy curve V,.(R) defined by Eq. (36) and to solve Eq.
(38).

The vibrational excitation and dissociative attachment
cross sections are then given as

2

’773 * *
oyl (E) = f dR x, (R, (R)E(R)| . (39)

gy, i~V k2

27K
o NE) =5

ei

lim |&(R)? (40)

where £, (R) is the so-called “exit amplitude.”
In the standard LCP approximation, the entry and exit
amplitudes are independent of the electron energy and of the
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FIG. 2. (Color online) Two-dimensional potential V(R,r) from
Eq. (5) for the N,-like (upper panel) and NO-like (lower panel)
models. Internuclear distances are given in units of Bohr radius,
ay=5.291772 1 X 10~"" m. Energies are in units of hartrees, where
1 hartree=4.359 748 X 10718 J.

vibrational excitation channel. They are determined from the
resonance width according to

r
TCENCLY @)

However, this expression for the entry amplitude produces an
obviously incorrect threshold behavior in the calculated cross
sections, with the cross section in the elastic channel diverg-
ing as ky;—0, for example. Therefore an ad hoc “barrier
penetration factor” [7,18] was introduced to force the correct
threshold behavior. The amplitude ,(R) is then given by

r (R), 42)

1+1/2
R
R\ >

&(R) =
where

i < kR
v (R) =1 k®) " ’ (43)

1 ifk,=k(R),
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FIG. 3. (Color online) Adiabatic potential curves used in LCP
approximation calculations for the N»-like model (upper panel) and
the NO-like model (lower panel) with only some vibrational states
plotted. Energies E are in units of hartrees and internuclear dis-
tances R are in units of a,. Shaded areas illustrate the width I'(R)
associated with the complex anion potentials.

k2
;R) = B (R) = Vo(R), (44)

and k, is the electron momentum in the vibrational
channel v.

We used both expressions for the entry amplitudes, Eqs.
(41) and (42), to calculate the vibrational excitation and dis-
sociative attachment cross sections for comparison with the
exact cross sections for the N,-like and NO-like parametri-
zations of the two-dimensional (2D) model described in the
following section.
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V. TWO-DIMENSIONAL MODELS FOR ELECTRONIC
COLLISIONS WITH N, AND NO

In order to investigate validity of the LCP approximation
we constructed two models, the fixed-nuclei potentials of
which are quantitatively similar to adiabatic potential energy
curves that have been used in LCP calculations of resonant
electronic collisions with the molecules N, and NO. The
local complex potential approximation reproduces the ex-
perimental vibrational excitation cross sections reasonably
well in the case of the e"+N, system [7,8], and so we begin
by comparing the exact solutions of our two-dimensional
model problem using N,-like potentials with the correspond-
ing LCP approximation to the nuclear dynamics.

Unlike the well-studied N, system, nuclear motion during
electronic collisions with the NO molecule has been investi-
gated in theoretical calculations only recently [19,20]. The
lowest-energy resonance in NO (which has >3~ symmetry) is
fundamentally different from the 11 o resonance of Ny, be-
cause the anion potential crosses that of the neutral molecule
near its equilibrium internuclear distance. The threshold for
vibrational excitation is therefore quite low. Additionally,
dissociative attachment proceeds via the same resonance, and
regions where the local width is very large are important for
this process.

Thus, there is ample reason to suspect that either nonlocal
effects or non-Born-Oppenheimer effects might play an im-
portant role in this case. In the existing calculations on vi-
brational excitation and dissociative attachment to this sys-
tem [19,20], the LCP approximation was employed,
generalized using the barrier penetration factor and a nonlo-
cal imaginary part of the molecular anion potential. It is in-
teresting therefore to explore this case with our two-
dimensional model and to compare its exact solution with the
corresponding LCP approximation, with and without the ad
hoc barrier penetration factor.

A. Parametrization of the models for N, and NO
We used the same functional forms for both systems for
the functions Vy(R), A(R), and «(R) appearing in Egs. (5)
and (6),

Vo(R) = Do(e 20 8H0) — gemeolkoFo)), (45)
Ao

MR) =\ + T3 &Ry (46)

)\0 = ()\(‘ - )\oo)(l + e)\l(R(_R}\))’ (47)

a(R) = a,. (48)

In Eq. (47) A, is given by the condition at the crossing point
of potential curves A(R.)=\,. In the N,-like model we ad-
justed the parameters to approximately reproduce the ab ini-
tio data of Ref. [21] for the *II . resonance state of N;. In the
NO-like model we adjusted the parameters to approximate
the data of Ref. [20] for the >3~ resonance state of NO™. The
numerical values of all the parameters of the two models are
listed in Table I.
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It should be noted here that this simple parametrization of
the N,-like model was optimized for the internuclear dis-
tances where resonant vibrational excitation takes place,
roughly 1.6ay=< R =< 3.0a,. That parametrization produces the
incorrect behavior as R— %, giving a positive electron affin-
ity for the N atom. But the threshold for dissociative attach-
ment in this model (~0.6 hartrees) is high above the energy
region where resonant vibrational excitation takes place and
thus this deficiency of the N,-like potentials is not relevant to
our study. On the other hand, in the NO-like model we will
study both vibrational excitation and dissociative attachment,
and therefore we adjusted parameters to get the correct elec-
tron affinity for oxygen and simultaneously the correct posi-
tion of the crossing point.

The resulting two-dimensional potentials V(R,r) for the
N,-like and NO-like models are shown in Fig. 2. In both
cases, an incoming electron tunnels through the potential
barrier located roughly between r=2a, and 3a, and is cap-
tured into the deep potential well parallel to the R axis for
r<<2a,. A temporary molecular anion then evolves in this
well until the electron is released through the barrier again or
the anion dissociates.

The corresponding adiabatic potential curves used in the
LCP approximation are shown in Fig. 3. The curves labeled
Vo(R) are the potential energies of the neutral molecules. For
clarity, only a few vibrational states (0-6 for N, and 0, 5, 10,
..., 50 for NO) are shown. The potential of the molecular
anion is complex for R<R,, and the the width I'(R) is illus-
trated by the shaded area around the real part E,.(R) of the
potential.

B. Wave functions

Before we compare the exact cross sections of vibrational
excitation and dissociative attachment with those calculated
within LCP approximation, we will examine some examples
of scattered wave functions W (R,r) [the solutions of Eq.
(14)]. These wave functions demonstrate the nature of the
resonant collision and directly illustrate the coupling be-
tween nuclear and electronic motion.

In Fig. 4 we plot the squared modulus of the scattered
wave functions |W(R,7)*> calculated in the N,-like model
for the molecule initially in the ground vibrational state and
for incoming electron energies E,;=0.07, 0.095, and
0.12 hartrees. In this case those are the same as the total
energies of the colliding system, because we set the zero of
energy to coincide with the ground vibrational state of the
molecule, and they are marked by the horizontal lines in
Fig. 3.

Although these wave functions describe the system in a
time-independent picture, we can see in them the sequence
of events that constitutes the resonant behavior of the collid-
ing system. An electron is captured by the molecule, creating
a temporary state of the molecular anion, as indicated by the
peaks in |W(R,r)|* close to the R axis. The temporarily
bound electron described by each of these wave functions
can decay back into the continua of the vibrational excitation
channels, and that process corresponds to the ridges reaching
out to large values of r for R<R.=2.405a.
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FIG. 4. (Color online) Squared modulus of scattered wave func-
tions, | W (R,7)|* (R and r are in units of a;), for the N,-like model
with initial vibrational state v;=0 at the energies of the incoming
electron E,=0.07, 0.095, and 0.12 hartrees. The potential V(R,r)
(in units of hartrees) in the same region is shown in the bottom
panel.
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two initial vibrational states (v;=0 and 15) at total energies of E=0.150 and 0.175 hartrees (also marked in Fig. 3, lower panel). The wave
functions for initial state v;=0 were magnified by 107 at E=0.15 hartrees and 10° at E=0.175 hartrees for R=2.5a, (beyond the dark line).

The number of peaks in the wave function at a given
energy can be understood by considering nuclear motion in
the effective local potential for the temporary molecular an-
ion. We can see that relationship by comparing the nearest
quasi-bound state of the molecular anion potential (E,. in the
upper panel of Fig. 3) that lies below the energy of the col-
liding system with the two-dimensional scattered wave func-
tion. The number of peaks in | (R,r)|? in these figures is
exactly what one would expect based on that comparison,
i.e., it is equal to the number of vibrational states supported
by E,.(R) below the collision energy. In the case of the wave
function for E,=0.12 hartrees, for example, the nearest state
of the anion below the collision energy is v=6, and there are
six peaks in this region of the wave function. The same com-
parison explains the number of peaks seen in the other panels
of Fig. 4. However, it is important to note that the resulting
vibrational excitation cross sections cannot be explained as
arising from only a single quasibound vibrational state of the
anion. If that were the case, the peaks in all the vibrational
excitation cross sections would occur at essentially the same
energies, but they depend on the final vibrational state, as we
will see below.

In the case of the NO-like model, the wave functions at
lower energies are very similar to the wave functions of the
N,-like model. However, at higher energies this system can
undergo dissociative attachment as well as vibrational exci-
tation. In Fig. 5 we show examples of wave functions at total
energies just below and just above the dissociative attach-
ment threshold for two initial vibrational states of the mol-
ecule, v;=0 (left panels) and v;=15 (right panels). The upper

panels show the squared modulus of the scattered wave func-
tions at total energy E=0.15 hartrees, which is below the
dissociative attachment threshold. The lower panels show
| (R,r))? at a total energy of E=0.175 hartrees, which is
slightly above the dissociative attachment threshold where
the cross section is near its maximum value. The total ener-
gies for these plots are also marked in the lower panel of Fig.
3. Note that for fixed total energies, the energy of the incom-
ing electron is different depending on the initial vibrational
state, and that the scattered wave functions for the molecule
in the initial state v;=0 are magnified by factors of 107 and
10° for R=2.5a,,.

In the upper panels of Fig. 5 we can clearly see that, when
the total energy of the system is below the dissociative at-
tachment threshold, the wave function is restricted in the R
direction to the well of the adiabatic molecular anion poten-
tial energy curve V,.(R), because only vibrational excitation
channels are open. Once again the number of peaks in that
region of the wave function can be understood by comparing
it with the nearest quasibound vibrational state of the mo-
lecular anion below the scattering energy. In contrast, in the
lower panels where the total energy is above the dissociative
attachment threshold, an outgoing wave in R appears which
corresponds to dissociation of the molecular anion.

The magnitude of the wave function in the dissociative
attachment channel at a given total energy of the system
depends strongly on the initial vibrational state, v;, of the
molecule and increases by several orders of magnitude with
increasing v;. This behavior can be understood qualitatively
with a simple and general classical picture of nuclear motion.
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FIG. 6. (Color online) Cross sections (in units of a(z)) for vibrational excitation calculated for the N,-like model. Energies are in units of
hartrees. Exact cross sections (solid curves) for the elastic (v=0) and three inelastic (v;=1,2,8) processes are compared with cross sections
in the LCP approximation without (dotted curves) and with (dashed curves) the barrier penetration factor.

If a molecule is in a higher initial vibrational state before the
collision with the electron, the kinetic energy of the nuclei is
also higher and the temporary molecular anion can most
probably escape from the region where electron can be de-
tached (the region where I'(R) is not zero). This increase of
the magnitude of the wave function in the dissociative at-
tachment channel is reflected, as we will see in the following
section, in a dramatic increase of the dissociative attachment
cross section for higher initial vibrational states of the mol-
ecule.

C. Cross sections

Our goal here is to compare the cross sections obtained in
these exact calculations with those computed in the LCP
approximation, both with and without the barrier penetration
factor in its standard form as given in Egs. (42)—(44). In Fig.
6 we show the cross sections for vibrational excitation in the
N,-like model from the ground state, v;=0, to final vibra-
tional states v=0 (elastic), 1, 2, 8. In Fig. 7 we plot the same
vibrational excitation cross sections for the NO-like model.
Each plot shows the exact cross section together with both
versions of the LCP approximation to it.

For the case of the N,-like model, the exact cross sections
are both qualitatively and quantitatively similar to the physi-
cal cross sections for this system. The LCP approximation
gives nearly exact cross sections for the vibrational excita-
tion of the low lying vibrational states, vy=1,2, but fails
badly in describing the first peak for vy=8 which is at an
energy where the dynamics can probe the region of the cross-

ing between the anion and neutral potentials. It is at these
energies that one expects nonlocal, and possibly non-
adiabatic, effects become important.

For elastic scattering we see in the top left panel of Fig. 6
that the LCP approximation fails at low energies, where one
might expect it to, because of its intrinsically incorrect
threshold energy dependence. Indeed, the barrier penetration
factor which was originally designed [18] to force the correct
threshold behavior provides a much improved description of
the first two peaks in the elastic scattering cross section. At
higher incident energies the LCP approximation with and
without the barrier penetration factor gives the same results,
because the barrier penetration factor tends to unity as one
can see in Eq. (43). The disagreement with the exact elastic
cross section in this case is due to the nonresonant (back-
ground) contribution to this cross section which is not de-
scribed at all by the LCP approximation.

However the deficiencies of this ad hoc correction can
easily be seen in the other panels of Fig. 6. Applied to vibra-
tionally inelastic scattering the barrier penetration factor uni-
formly worsens the agreement between the LCP approxima-
tion and the exact cross sections.

One can make qualitatively similar observations about the
vibrational excitation cross sections in the NO-like model.
Once again the exact solution of the two-dimensional model
gives cross sections that are similar to the physical ones for
this system. However, in this case the fact that the crossing
between the neutral and anion potentials (shown in Fig. 3)
occurs near the minimum of the neutral potential curve leads
to much poorer agreement in general between the LCP ap-
proximation and the exact cross sections. The LCP approxi-
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FIG. 7. (Color online) As in Fig.

mation fails for the lower peaks of all the vibrational excita-
tion cross sections, and the barrier penetration factor
generally makes the agreement worse.

The dissociative attachment cross sections for this system
are shown in Fig. 8. Here we plot the cross section for dis-
sociative attachment to the molecule in initial vibrational
states v;= 0, 10, 15, and 20. The magnitude of the cross
section increases rapidly with increasing initial vibrational
state v;. A simple explanation for that increase was given in
the previous subsection in terms of the wave functions at
these energies.

The agreement of the cross sections computed using the
LCP approximation with the exact 2D model results depends
dramatically on the initial state of the system. For low initial
vibrational states the LCP approximation gives cross sections
that are larger than the exact ones by several orders of mag-
nitude. In these cases the failure of the LCP approximation is
probably due to the fact that, at these high incident energies,
a vertical transition to the resonant state is unlikely. For that
reason, at least nonlocal, and possibly nonadiabatic, effects
are playing a dominant role.

For vibrational states in the range of v;=10-15, the LCP
approximation gives quite a good description of the cross
sections for dissociative attachment. In this region of inter-
mediate energy for the incident electron it appears that non-
local or nonadiabatic effects are unimportant. For still higher
initial vibrational states, in the range v;=15, the LCP ap-
proximation begins to fail near threshold, and ultimately be-
comes less accurate at higher energies as well, as shown in
the lower right panel of Fig. 8. The standard barrier penetra-
tion factor further worsens the agreement in all of these
cases. For these highly excited initial vibrational states of the
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6, but for the NO-like model.

molecule both nonlocal and nonadiabatic effects can be sus-
pected as the reason for the breakdown of the LCP
approximation—in particular near the threshold for the dis-
sociative attachment process.

VI. CONCLUSION

In this paper we have described a complete two-
dimensional model for electron scattering from a diatomic
molecule that contains the essential physics of resonant elec-
tronic collisions and the processes that arise from them. We
showed how this model can be used to mimic specific mo-
lecular systems and compared it with the local complex po-
tential approximation to nuclear dynamics in metastable
electronic states. These are the necessary first steps to con-
structing a theoretical laboratory with which the underlying
assumptions of the powerful class of nonlocal theories for
resonant vibrational excitation and dissociative attachment
can be tested.

To take the next steps towards doing those tests, we first
observe that by using the FEM DVR representation of all the
operators we can construct any projection operator to arbi-
trary precision. We will need the Feshbach projection opera-
tor corresponding to any discrete approximation to the reso-
nant state. For example if the approximation to the resonant
state is Yes(r; R)=(r| hs(R)), depending on the nuclear co-
ordinate R parametrically, the corresponding Feshbach Q
projection operator appearing in the nonlocal theories [9] is

O(R) = [#es(R) X hres(R)]. (49)
In the FEM DVR representation it would be the matrix
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FIG. 8. (Color online) Cross sections (in units of a(z)) for dissociative electron attachment for the initial vibrational states v;=0, 10, 15, and
20. Energies are in units of hartrees. Exact cross sections (solid curves) of the 2D model are compared with cross sections obtained by LCP
approximation without (dotted curves) and with (dashed curves) the barrier penetration factor. The barrier penetration factor does not change

the cross sections in the upper panels.

Qrr! ReRy = VW s (1RO Yres(rj, R 8y, (50)
which is diagonal in the indices corresponding to the nuclear
coordinates but nondiagonal in the indices corresponding to
the electronic coordinates. The factor of @wiwj is a product
of DVR weights [14,16] that appears here because the pro-
jection operator is nonlocal. The representation of P=1-Q is
obviously similar.

The full Hamiltonian operator in Eq. (3) has a completely
nondiagonal matrix represention, while the electronic Hamil-
tonian in Eq. (8) has a FEM DVR matrix representation that
is nondiagonal in electronic coordinates but diagonal in
nuclear coordinates. The construction of the operators PHP,
QHQ, and PHQ is thereby reduced to simple matrix multi-
plications. When the full Hamiltonian is used, the action of
the nuclear kinetic energy is included and all nonadiabatic
terms can be calculated exactly. The Born-Oppenheimer ap-
proximation is made when the electronic Hamiltonian is used
in these projected operators.

Most importantly, all the the Green’s functions appearing
in the nonlocal theories, e.g., (E— PHP+i€)~!, can be calcu-

lated using the ECS approach with which we constructed the
full Green’s function (E—H+i€)~" here. All the other quan-
tities involved in various versions of the nonlocal theories
can be constructed using similar ideas.

Therefore, although we have restricted ourselves here to
comparisons with the local complex potential approximation,
these tools open the way to comparisons with any form of
the nonlocal theories that have been applied to physical sys-
tems. The two-dimensional model we described here, to-
gether with the associated numerical methods of the ECS and
FEM DVR approaches, form a laboratory with which those
comparisons can be made. Such calculations will be reported
in a subsequent study.
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